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Green’s function theory for infinite and semi-infinite particle chains
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A Green’s function theory for the excitation of, and scattering from, particle chains is developed. A Z transform
is applied to the discrete dipole approximation of the chain, and the chain’s spectral properties are explored in
the complex Z plane. It is shown that a continuous spectrum may be excited, and the roles of the discrete and
continuous spectra in the chain response are studied. The latter may dominate the chain response under lossy
conditions. Using the Wiener-Hopf technique, the theory is extended to semi-infinite chains and the chain edge
effects are studied. It is shown that edge effects can significantly enhance chain excitation.
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I. INTRODUCTION

The electromagnetic properties of linear chains of identical
and equally spaced microparticles have been studied in
a number of previous publications.1–7 If the interparticle
distance d is much smaller than the free-space wavelength
λ, these structures can support the propagation of guided
electromagnetic modes along the chain that does not radiate
into the free space, with total width that can be much smaller
than λ, hence, the name subdiffraction chains (SDC). If
the particles are isotropic spheres, three independent electric
dipole modes are supported; one with longitudinal e-dipole
polarization pz, and two degenerate modes with transverse and
orthogonal polarizations px,py .7 Otherwise, more elaborate
mode structures may exist.8–10 The interest in SDCs is
motivated by both theoretical and practical points of view.
Particle chains were proposed as guiding structures and
junctions1–7 as a mechanism for coupling to surface waves8

and as polarization-sensitive waveguides.9 Very recently, it
has been shown that magnetized spiral chains of plasmonic
nanoellipsoids can be used as one-way optical waveguides.10

However, these previous studies essentially concentrated on
the modal properties of the chain (i.e., a discrete set of guided
and radiation waves), leaving out the continuous spectrum. A
study of the SDC response to a general external excitation has
not been addressed.

The purpose of this paper is to develop a rigorous Green’s
function theory that encapsulates all the wave phenomena
associated with particle chains shown in Fig. 1, e.g., guided
modes, radiation modes, and continuous spectrum. The Z

transform11,12 (ZT) constitutes our basic mathematical tool.
The resulting theory provides a framework for describing not
only these spectral entities, but also a full-wave formulation
for the response to external excitations of any kind. This may
be of particular importance as the problem of chain excitation
can not be addressed by using only the modes’ dispersions;
a procedure that determines the modes’ weight, as well as
the continuous spectrum weight, is needed. Furthermore, we
employ a special Z transform extension of the Wiener-Hopf
technique to solve rigorously the case of semi-infinite SDC
(see examples in Refs. 13–15 for antenna arrays and for a
two-dimensional wire or strips problems), a case of special
importance as it incorporates edge effects that are inevitably
excited in any realistic chain. These edge effects are given
here explicit expressions describing the intermode couplings

and reflections occurring at the chain end, e.g., guided mode
to guided mode, guided mode to light-line mode, etc. We note
that particle chains of finite or semi-infinite length were studied
so far only numerically,16–19 and the physical processes taking
place at the edge remain unexplored. A careful comparison
of our infinite and semi-infinite Green’s functions is provided
here and reconciled with the physical insight gained by the
aforementioned edge coupling coefficients and with previous
numerical studies done for particle chains of finite large
length.16,17 We also show that the edge effect can significantly
enhance chain excitation by external beams.

Why ZT and not conventional Fourier transform (FT)?
Indeed, a formally exact representation of a particle-chain
Green’s function in terms of the FT has been derived and
studied in, e.g., Refs. 16 and 17. In the FT approach, the
Green’s function is obtained by an inverse FT of its spectrum.
Since the system under study is periodic with period d,
this inverse FT is given by an integral that extends over
the finite interval R = [−π/d,π/d]: the reciprocal lattice
domain. Hence, powerful tools of complex analysis based
on closed-contour integration such as the residue theorem,
Wiener-Hopf technique, etc., can not be invoked unless one
rigorously maps R to a closed-integration contour. This is
precisely what the ZT is all about. The reciprocal lattice is
mapped onto C1: the unit circle in the complex Z plane. The
result is a powerful and physically transparent mathematical
tool in which the Green’s function wave constituents can
be discerned directly from the analytic properties of the
chain’s spectra in the complex Z plane. Each singularity is
a distinct wave phenomenon; poles moving on trajectories
that follow C1 represent guided modes, poles on trajectories
directed inward or outward of C1 are radiation modes, branch
point and the associated branch cut constitute the continuous
spectrum, etc. Their excitation strengths are nothing but the
corresponding residues. Due to this analytical clarity, the
aforementioned new wave phenomenon that was missed in
previous studies based on the FT, i.e., the continuous spectrum
wave, has been exposed. We show here that this wave can
dominate the infinite or semi-infinite chain response and is
practically not affected by material loss. This analytical clarity
also sheds light on the somewhat artificial distinction made
previously between “ordinary” and “extraordinary” waves16,17

(referred to, respectively as “guided” and “light-line” modes
in Ref. 7), all of which are simple poles in the complex Z
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FIG. 1. (Color online) Excitation of (semi-) infinite particle chain.

plane, moving along various trajectories as the frequency is
changed. Furthermore, we show that the “extraordinary” wave
(“light-line” mode) does not exist in longitudinal polarization;
the corresponding poles exist only in transverse polarization
(consistent with Ref. 7). The continuous spectrum wave, due
to a nearby branch point, is responsible for an excitation in
the longitudinal polarization, which was misinterpreted as an
“extraordinary” wave in Refs. 16 and 17.

Finally, it should be emphasized that a detailed analytical
study of the infinite chain properties and singularities in the
complex Z plane is carried out not only as a means to get
a yet better understanding of the infinite chain physics. The
infinite chain singularities tell us how to perform the analytic
continuations that lie in the heart of the Wiener-Hopf technique
and, as such, they play a crucial role for carrying out the
semi-infinite case as well.

To obtain the equation governing the chain dynamics, we
use the discrete dipole approximation (DDA) and polarizabil-
ity theory.3–9 These hold when the particle diameter D is much
smaller than the wavelength and the interparticle distance d is
large compared to D. Studies show excellent agreement with
exact solutions even when d = 1.5D.20 Then, the ZT is applied
to the governing equation and a spectral study is carried in the
complex Z plane.

II. THEORY

Let α be the tensor polarizability of a reference particle in
the structure shown in Fig. 1. All the particle properties (e.g.,
geometry, material, magnetization, etc.) are embedded in α.10

The chain dipole’s response pn (n = 0, ± 1, ± 2, . . .), due to
an arbitrary incident field Ei(r), is governed by the matrix
equation10

α−1 pm − ε−1
0

∑
n�=m

A[(m − n)d] pn = Ei(rm). (1)

Here, rm = (0,0,md) is the location of the mth particle, and
A(z) is the free-space dyadic Green’s function, giving the free-
space electric field at r = (0,0,z) due to an infinitesimal dipole
p at r ′ = 0:

E(z) = ε−1
0 A(z) p, (2)

A(z) = eik|z|

4π |z|
[
k2A1 +

(
1

z2
− ik

|z|
)

A2

]
(3)

with A1 = diag(1,1,0), A2 = diag(−1, − 1,2). We define the
series of matrices Dn:

Dn =
{

−ε−1
0 A(nd), n �= 0

α−1, n = 0
(4)

so Eq. (1) is rewritten as

∞∑
n

Dm−n pn = Ei r
m , Ei

m ≡ Ei(rm), (5)

where the lower summation limit is −∞ (0) for infinite
(semi-infinite) chain, where in the former case it has a form
of a discrete series convolution. The equation above can
be analyzed and solved using the Z transform, a standard
tool in spectral theory of difference equations11 and discrete
systems.12 We apply the ZT to study the solution properties
of our chains, using the (extended) double-sided ZT.12 The
ZT of a vector or matrix series is obtained by applying the
conventional (scalar-series) ZT to each of the entries. Hence,
the ZT of the series pn, denoted as p̄, is obtained by

p̄(Z) =
∞∑

−∞
pn Z−n (6)

and the transform of Dn is obtained similarly. We assume
that pn is bounded. Then, for n � 0 (n < 0), the series above
is strictly convergent outside (inside) the circle |Z| = R+
(|Z| = R−, with R+ � 1 � R−) and is analytically continued
to the complementary complex domain |Z| � R+ (|Z| � R−).
Therefore, the series radius of convergence (ROC) is the ring
R+ � |Z| � R−, which contains, in any case, the unit circle.
The inverse ZT is given by

pn = 1

2πi

∮
C±

p̄(Z) Zn−1dZ. (7)

The integration contour should lie on the ROC and encircle
the origin in a counterclockwise direction. The unit circle (C1)
is an appropriate path; integration over it may be replaced by
contributions of singularities. To that end, we define new paths
C± by C+ = C1 and C− = C1

⋃
C∞. Here, C∞ encircles

the complex Z plane at infinity in a clockwise direction.
For the semi-infinite chain, the integration contour C± = C+
encircling all the singularities within the unit circle in the
complex Z plane in a counterclockwise direction. For the
infinite chain, the contour C± = C+ for n � 0, and C± = C−
for n < 0, encircling all the singularities external to the unit
circle in the complex Z plane in a clockwise direction. In
principle, the Z transform can be applied to Eq. (5) in order to
solve rigorously for pn. For an infinite chain, Eq. (5) possesses
a shift-invariant form (an infinite-series convolution) in which
case it is transformed to a multiplication in the spectral (Z)
plane. Then, the convolution operator is readily inverted. For
a semi-infinite chain, the shift-invariance property is lost and
we need a more elaborated tool to invert the semi-infinite
difference operator. Below, we treat each of these cases
separately.
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A. Infinite chains

By applying the ZT to Eq. (5) with −∞ as a lower bound
and using the convolution theorem, one obtains, for p̄(Z),

p̄(Z) = [D̄(Z)]−1 Ēi(Z). (8)

With the equation above, we define the chain’s Green’s
function matrix series Gn as the inverse ZT of Ḡ(Z) =
[D̄(Z)]−1:

Gn = 1

2πi

∮
C±

[D̄(Z)]−1 Zn−1dZ. (9)

This Green’s function is the chain response due to an excitation
of the n = 0 particle by a unit electric field vector. The
response to an arbitrary excitation is obtained by the discrete
convolution

pn =
∑
m

Gn−m Ei
m ≡ Gn ∗ Ei

n. (10)

1. Analytic properties: Transverse excitation

The matrix A(nd) is diagonal. For transverse excitation,
it is sufficient to consider only the first two entries. These
two entries couple if the particle polarizability matrix α is
nondiagonal, which takes place only for magnetized chains
and/or when particle asymmetry is present.10 Here, we assume
a simple chain made of nonmagnetized spherical particles
with a scalar polarizability. Concentrating on the transverse
excitation, we may consider only the first diagonal entry of
each matrix in the matrix series Dn, denoted now by the scalar
series Dn. Applying the ZT, we have, for the infinite chain
under transverse excitation,

D̄(Z) = k3

4πε0

[
f1(Z)

kd
+ if2(Z)

(kd)2
− f3(Z)

(kd)3

]
− 1

α
, (11)

where we used Dn = D−n. fs(Z) is defined as

fs(Z) = Lis(e
ikdZ) + Lis(e

ikdZ−1), (12)

and Lis(z) is the sth-order polylogarithm function21

Lis(z) =
∞∑

n=1

zn

ns
⇒ Li ′s(z) = z−1Lis−1(z), (13)

with Li0(z) = z/(1 − z), Li1(z) = − ln(1 − z). Additional
properties of the polylogarithm functions needed here are
presented in Appendix A. Generally, Lis(z) inherits the
singularity of ln(1 − z) ∀s � 1, possessing Riemann sheets of
infinite multiplicity. In the zeroth Riemann sheet (R0), fs(Z)
possesses two branch points Zb 1,2 and two branch cuts

Zb 1,2e
±ikd = 1. (14)

One cut emerges from the branch point at Zb 1 = e−ikd and
extends to infinity, and a second cut emerges from a branch
point at Zb 2 = eikd and extends to the origin. D̄(Z) and
the Green’s function spectrum Ḡ(Z) possess exactly the
same branch singularities. These branches constitute the chain
continuous spectrum, which has not been studied before.
These branch points result solely from the analytic properties
of the polylogarithm functions (which in turn result from
interparticle interactions). Hence, they are independent of the

FIG. 2. (Color online) The analytic properties of the spectral
Green’s function Ḡ(Z) in the complex Z plane for transverse
excitation. The poles, shown by ×, convey the chain modes’
excitation. The branch cuts, shown by wiggly lines, convey the
continuous spectrum excitation.

particle material. This fact is of importance for understanding
the complete chain behavior in the presence of loss. In addition,
Ḡ(Z) possesses poles Zp(ω) in the complex Z plane, given
by the zeros of D̄(Z) in Eq. (11). These poles represent the
chain modes reported in previous publications (see Refs. 3–5
for theoretical analysis, Ref. 6 for interesting experimental
verifications, and Ref. 7 for a comprehensive exposition). Since
the zeros of Eq. (11) depend on α, pole locations may depend
on material and are influenced by loss. The previously derived
modes’ dispersion relations β(ω) are obtained from Zp(ω) by

eiβd = Zp(ω). (15)

From the symmetry of fs with respect to Z, it follows that, if
Zp � is a pole, then Zp �′ = Z−1

p � is also a pole; the number of
poles is always even. Clearly, for lossless particles, the chain-
propagating modes are obtained by poles located exactly on the
unit circle: |Zp| = 1. The chain-radiation modes are obtained
by poles inside the unit circle for n � 0, and by poles outside
the unit circle for n < 0. We have computed numerically
the pole locations for an infinite chain of lossless plas-
monic spherical inclusions (typical pole dynamics is shown
in Fig. 2).

Referring to the figure, branch points are shown by solid
black circles, branch cuts by wiggly lines, and poles are marked
by black ×, all for a specific frequency. Pole trajectories
as a function of frequency are denoted by solid color lines
in the zeroth Riemann sheet R0, by dashed-dotted lines in
the −1 Riemann sheet (R−1), and by dashed line in R1
(dotted wiggly lines correspond to branch cuts in R1 and
R−1.) The evolution of the branch points as a function of
frequency is omitted to avoid cluttering the figure. As pointed
out before, there are four poles. We denote by Zp 1,2 (Zp 3,4)
the poles pertaining to propagation in n > 0 (n � 0). At very
low frequencies, two poles Zp 1,4,Zp 4 = Z−1

p 1 are located in
R0 on the unit circle near Z = 1 at location #1, just above
the upper branch point at eikd and below the lower branch
point at e−ikd . Their location indicates that they correspond to
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propagation modes of the chain, with characteristic dispersion
very close to the light line (denoted light-line modes in Ref. 7,
or extraordinary waves in Ref. 16). They possess no low-
frequency cutoff, and their evolution with frequency is shown
by the red (continuous line, that is followed by dashed-dotted)
lines. For ω < ω3, their location remains close to the branch
points (the latter evolve along the unit circle). Note that, at
the branch singularities (14), we have limZ→Zb 1,2 Ḡ(Z) = 0;
hence, whenever Zp 1,4 are close to Zb 1,2, the corresponding
residues are very small, thus establishing mathematically the
observation made heuristically in Ref. 7 that the “light-line
modes” excitation and interaction with the chain are very weak.

Two additional poles Zp 2,3,Zp 3 = Z−1
p 2 emerge from the

origin and from Z = −∞ in R0 and move along the blue
trajectories toward Z = −1. They reach point #2 at frequency
ω2, representing the lower cutoff of the corresponding chain-
propagating modes. When these poles move along the unit
circle, the corresponding waves possess real wave number
larger than k and they constitute modes that propagate along
the chain with no radiation to the free space. These modes are
termed as “guided modes” in Ref. 7, and “ordinary waves”
or “quasistatic waves” in Ref. 16. As frequency increases,
all these four poles evolve along the unit circle toward point
#3. The corresponding frequency ω3 is the upper cutoff of the
chain modes. For ω > ω3, the poles represent radiation modes,
which move along the continuous red and blue trajectories and
intersect the branch cuts at points #4 and #5 at frequencies
ω4,5, respectively, residing thereafter in the R-1 (dashed-dotted
red line) and R1 (dashed blue line). It should be emphasized
that, for ω > ω5, the chain Green’s function consists of
branch cut (i.e., continuous spectrum) contribution only; in this
frequency domain, no propagation modes or radiation modes
are supported by the chain.

Finally, note that, when losses are present, Zp 1,2 (Zp 3,4)
are slightly shifted inward (outward) of the unit circle, but the
branch point locations are not affected.

An expression for Gn can be obtained by using Eq. (11) in
the inverse ZT (9), exploiting the analytic properties discussed
above. We have

Gn =
∑
m

G(pm)
n + G(b)

n , (16)

where G
(pm)
n and G(b)

n are the mth pole and the branch-cut
contributions to the Green’s function, representing the discrete
and continuous spectra, respectively. They are given by

G(pm)
n = sgn(n)

1

D̄′(Zpm
)
Zn−1

pm
, (17)

G(b)
n = 1

2πi

∫
Cb

1

D̄(Z)
Zn−1. (18)

In the above, sgn(x) = 1 for x � 0 and −1 elsewhere. Zpm
is

the mth pole located inside (outside) the unit circle, Cb is an
integration path that encircles the branch cut inside (outside)
the unit circle in a counterclockwise (clockwise) direction for
n � 0 (n < 0). By using Eqs. (11)–(13), one can express D̄′
in terms of Lis , and simplify Eq. (17). By defining

gs(Z) = Lis(e
ikdZ) − Lis(e

ikdZ−1), (19)

G
(pm)
n can be written explicitly as

G(pm)
n = sgn(n) 4πε0d/k2∑2

s=0

(
i

kd

)s
gs(Zpm

)
Zn

pm
. (20)

The characteristic behavior of Zn
pm

is nothing but the prop-
agation of a guided or radiation mode in the structure [see
Eq. (15)]. Note that, for n � 0 (n < 0), only the poles inside
(outside) the unit circle are included.

A similar expression for the continuous spectrum wave in
Eq. (18) is not available. However, the branch-cut integral can
be evaluated asymptotically for large |n| (see Appendix B). It
yields the interesting wave-type result

G(b)
n 
 4πε0d

k2

ei|n|kd

|n|
2∏

m=1

1

ln |n|+Am

, |n| � 1 (21)

where the coefficients Am are given in Appendix B. Evidently,
this wave radiates to the free space as it propagates along
the chain and decays in a rate that is inversely proportional
to n(ln n)2. It oscillates with a spatial period of the vacuum
wavelength. Note that the particle material enters only via
the algebraic dependence of A1,2. Therefore, material loss
does not result in exponential decay; its effect is limited to an
algebraic change of the wave amplitude.

The various waves of Gn in a chain of plasmonic spheres
were calculated with the following parameters. The inter-
particle distance d and particle radius a are d = λp/30,
where λp is the plasma frequency wavelength, and a = 0.25d,
respectively. Several excitation frequencies were examined.
Figure 3 shows the various waves at ω/ωp = 0.580 907,
satisfying ω2 < ω < ω3. Formally, two poles on the unit
circle (guided and light-line modes) and branch-cut spectra are
excited. However, the light-line mode is extremely weak, and
the continuous spectrum is significant only near the source. The
asymptotic expression for the continuous spectrum is shown
in the inset by a black dashed line. It matches by amplitude and
phase, but, for clarity, only the envelope is shown. Figure 4
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FIG. 3. (Color online) Gn for transverse excitation and its
wave contributors at ω/ωp = 0.580 907 (ω2 < ω < ω3). Real and
imaginary parts are shown by blue and red lines, respectively. (a)
Gn. (b) The continuous spectrum wave. The envelope of Eq. (21) is
shown in the inset by black dashed line. (c) The guided mode. (d) The
light-line mode. Note that its excitation is O(10−12) weaker compared
to the other waves.

125402-4



GREEN’s FUNCTION THEORY FOR INFINITE AND . . . PHYSICAL REVIEW B 84, 125402 (2011)

−0.2

0

0.2

P
n
/α

 E

0

0.05

0.1

P
n

b
c/α

 E

−0.2

0

0.2

P
n

g/α
 E

−3 −2 −1 0 1 2 3

−5
0
5

x 10−13

P
n

l/α
 E

z/λ

1 2 3

0

2

4
x 10

−4

1 2 3
−5

0
5

x 10
−4

(d)

(c)

(b)

(a)

FIG. 4. (Color online) The same as Fig. 3, but for gold particles
with losses 1/τ = 0.0023ωp . The continuous spectra dominate at
large distances. Again, note that its excitation is O(10−12) weaker
compared to the other waves.

is the same as Fig. 3, but with losses of gold particles. The
continuous spectrum dominates at large distance.

The second frequency is ω/ωp = 0.587 677, satisfying
ω4 < ω < ω5. The light-line poles are in R−1 and do not
contribute. The poles Zp 2,3 are still on R0, inside and outside
the unit circle, corresponding to radiation modes at n � 1 and
n < 0, respectively. The pole and branch-cut contributions are
plotted in Fig. 5. The latter are comparable to the former.

2. Analytic properties: Longitudinal excitation

Here, we may consider only the third diagonal entry in Dn,
generating a different scalar series Dn. Applying the ZT, we
obtain

D̄(Z) = k3

2πε0

[
− if2(Z)

(kd)2
+ f3(Z)

(kd)3

]
− 1

α
. (22)

Hence, the branch point and branch cut of G(Z) are identical
to those of the transverse excitation, but we have only two
poles [zeros of Eq. (22)]. The properties are shown in Fig. 6.

The light-line poles, which exist under transverse excitation
and possess no low-frequency cutoff (shown by red trajectories
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FIG. 5. (Color online) The same as Fig. 3, but for ω/ωp =
0.587 677 (ω4 < ω < ω5). (a) Gn. (b) The continuous spectrum wave.
The envelope of Eq. (21) is shown by a black dashed line. (c) The
radiation mode (guided mode pole above its cutoff at ω4.)

FIG. 6. (Color online) The analytic properties of Ḡ(Z) in the
complex Z plane for longitudinal excitation.

in Fig. 2), are not present. This is consistent with Ref. 7. The
poles emerge from Z → ∞ at the third quadrant and Z = 0 at
very low frequency, and move toward point #2 as the frequency
increases. They reach point # 2 at frequency ω2 corresponding
to the lower cutoff of the propagation band. As the frequency
increases, the poles move along the unit circle toward point #3,
reaching it at frequency ω3 corresponding to the upper cutoff
of the propagation modes. For ω > ω3, the poles move along
the negative real axis toward Z = 0, − ∞, becoming again
radiation modes.

B. Semi-infinite chains

In the case of semi-infinite chains, Eq. (5) still holds, but
with lower summation bound n = 0 and equation index m � 0.
Since the shift-invariance property is lost, the convolution
theorem can not be directly applied. A special extension of the
Weiner-Hopf technique, presented in Refs. 13,14 for different
applications, may be used to solve this difficulty. We apply this
approach and put special emphasis on the wave interpretation
of the various spectral contributors. Following Ref. 13, we
define the + and − series as pertaining, respectively, to n � 0
and n < 0 for all quantities involved. Hence,

x+
n =

{
xn, n � 0

0, n < 0
, x−

n =
{

0, n � 0

xn, n < 0
(23)

where xn stands for pn,En, etc. From Eq. (6), the ZT of the
+ (−) series are analytic in |Z| � 1 (|Z| < 1), a property that
plays a pivotal role in subsequent analysis. Equation (5) can
be rewritten as (we omit the “i”)

∞∑
m=−∞

Dm−np
+
n = E+

m + E−
m, ∀m. (24)

In the actual chain, pn,En are not defined for n < 0. Hence,
p−

n ,E−
n do not have any physical role; they are used only as

entities that enable the extension of Eq. (5) to the shift-invariant
form in Eq. (24). However, the series Dn is defined for all n

and is identical to that of the infinite chain; its ZT is still given
by Eq. (11), with the same ROC. Note that we are not looking
for the Green’s function of the equation above; it was derived
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in the previous section. Rather, we look for the solution of
Eq. (24) for the right-hand side with E+

n = δn−n′ + the implied
E−

m [such that Eq. (23) is satisfied]. This is the Green’s function
Gn,n′ of the semi-infinite chain. The response to any incident
field Ei

n is then

pn = p+
n|n�0

=
∞∑

n′=0

Gn,n′Ei
n′ . (25)

We apply the ZT to Eq. (24), and decompose D̄(Z) as

D̄(Z) = D+(Z)D−(Z), (26)

where D+(Z) [D−(Z)] is analytic in |Z| � 1 (|Z| < 1), with
no zeros there. Due to this analyticity, and since D̄(Z) =
D̄(Z−1), we have

D+(Z) = D−(Z−1). (27)

Explicit expressions for D+(Z) in terms of D̄(Z) can be
derived (see Appendix C). Its value in |Z| > 1 and its analytic
continuation into the unit circle are given by

D+(Z) = 1

λ0
exp

1

2πi

∮
C1

ln D̄(ζ )

Z − ζ
dζ, |Z| > 1 (28)

D+(Z) = D̄(Z)

λ0
exp

1

2πi

∮
C1

ln D̄(ζ )

Z − ζ
dζ, |Z| � 1. (29)

D−(Z) is obtained via Eq. (27). λ0 is given by

λ0 = exp
−1

4πi

∮
C1

ln D̄(ζ )

ζ
dζ (30)

and we have

D−(0) = lim
Z→∞

D+(Z) = λ−1
0 . (31)

Application of the ZT on Eq. (24) now yields

D+(Z)p̄+(Z) = Ē+(Z)

D−(Z)
+ Ē−(Z)

D−(Z)
. (32)

The second term on the right-hand side above is analytic inside
the unit circle. The first term can be decomposed as

Ē+(Z)

D−(Z)
=

(
Ē+

D−

)+
(Z) +

(
Ē+

D−

)−
(Z) (33)

with which Eq. (32) can be rewritten as

D+(Z)p̄+(Z) −
(

Ē+

D−

)+
(Z) =

(
Ē+

D−

)−
(Z) + Ē−(Z)

D−(Z)
.

(34)

The two sides of the equality above are analytic on complemen-
tary domains in the complex Z plane with common region of
analyticity on |Z| = 1. Thus, by analytic continuation, we may
define an entire function. Let us denote this function by �(Z).
In addition, in view of Eq. (31) and of limZ→∞ p̄+(Z) = p+

0
[see Eq. (6)], we must have limZ→∞ D+p̄+ = p+

0 /λ0 = const.
Also, by considering the analytic properties of D− outside the
unit disk, it may be shown that limZ→∞(Ē+/D−)+ = const.
Furthermore, there is an additive constant flexibility in the
“+” and “−” decomposition in Eq. (33). We choose this
additive constant such that limZ→∞(Ē+/D−)+ = p+

0 /λ0, so
at Z → ∞, the left-hand side of Eq. (34) vanishes, i.e.,

limZ→∞ �(Z)=0, yielding that �(Z) is bounded. Finally, we
apply Liouville theorem (every bounded entire function must
be a constant) on �(Z), concluding that �(Z) ≡ 0. This yields
that ∀Z the left- and the right-hand sides in Eq. (34) vanish.
Hence, the left side implies

p̄+(Z) =
(

Ē+

D−

)+
(Z)

1

D+(Z)
. (35)

Since (Ē+/D−)+ is analytic outside the unit circle, it may be
expanded by a Laurent series(

Ē+

D−

)+
(Z) =

∞∑
j=0

ajZ
−j , (36)

where the coefficients aj may be obtained directly from a
generalization of Cauchy’s integral formula. We are mainly
interested in the chain Green’s function: the response to the
excitation Ei

n = δn−n′ (n′ � 0). Hence, Ē+(Z) = Z−n′
. Then

(see Appendix D),

aj =
{

1
2πi

∮
C1

Zj−n′−1

D−(Z) dZ, j � n′

0, j � n′ + 1.
(37)

We now apply inverse ZT to Eq. (35), use Eqs. (36) and (37),
and substitute D+ via Eq. (27) with a change of variable. The
result for the semi-infinite chain Green’s function (pn for δn−n′

excitation) is

Gn,n′ =
∞∑

j=0

λn′−jλn−j , (38)

where

λs =
{

1
2πi

∮
C1

Zs−1

D+(Z) dZ, s � 0

0, s < 0
(39)

which reduces to λ0 in Eqs. (30) and (31) for s = 0 (use
analyticity of D+ and Cauchy theorem).

1. Wave content and physical interpretation

While Eqs. (38) and (39) are formally complete and exact,
the wave content of the semi-infinite chain excitation remains
obscured. Below, we use the properties of D+ inside the unit
circle via Eq. (29) in order to rewrite the result in terms of
the cogent wave components excited in the chain, and their
interaction with the chain end. First, note that the exponent in
Eq. (29) is analytic and does not vanish for any |Z| � 1. Hence,
1/D+ and 1/D̄ have exactly the same singularities inside the
unit circle: two poles and one branch cut (see discussion in
Sec. II A.) Therefore, Eq. (39) can be replaced by two pole
residues and one branch-cut integration

λn =
2∑

m=1

κmG(pm)
n + 1

2πi

∮
Cb

Zn−1

D+(Z)
dZ, (40)

where we have used Eqs. (17), (19), and (20), and the
coefficient κm is given by

κm = λ0 exp
−1

2πi

∮
C1

ln D̄(ζ )

Zpm
− ζ

dζ. (41)
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Note that G
(pm)
n is nothing but the pole (mode) excitation in the

infinite chain. Substituting this into Eq. (38) and rearranging,
we obtain the following physically meaningful expression:

Gn,n′ =
2∑

m=1

G
(pm)
|n−n′| + G

(b)
|n−n′| (42)

+
2∑

m,m′=1

G(pm)
n G

(pm′ )
n′ �m,m′ (43)

+
2∑

m=1

[
G

(pm)
n′ B(m)

n + G(pm)
n B

(m)
n′

]
(44)

+ bn,n′ . (45)

Clearly, the first three terms summed in Eq. (42) represent
free chain modes and continuous spectrum, propagating from
particle n′ to particle n. The terms summed in Eq. (43)
represent chain modes m′ excited at n′, which propagate to the
chain end, get converted to mode m, and then reflected back
to the observer at n. The coupling and reflection coefficient
�m,m′ describing this process is given by

�m,m′ = κmκm′
Zpm

Zpm′

Zpm
Zpm′ − 1

. (46)

The first summed terms in Eq. (44) represent chain modes
(excited at n′) that hit the chain end, get converted to
continuous spectrum, then propagate back to the observer at n.
The conversion from mode m to continuous spectrum and the
propagation thereof are given by B(m)

n :

B(m)
n = κm

2πi

∫
Cb

Zn−1

D+(Z)

ZZpm

ZZpm
− 1

dZ. (47)

The second summed terms in Eq. (44) represent the continuous
spectrum (excited at n′) that hits the chain end and gets
converted to a chain mode (m) that propagates to the observer
at n. B

(m)
n′ is given by Eq. (47) with n → n′. Finally, bn,n′

represents the continuous spectrum that hits the chain end and
gets reflected as continuous spectrum. It is given by

bn,n′ = −1

4π2

∫
Cb

ZZ′

ZZ′ − 1

Zn−1Z′n′−1

D+(Z)D+(Z′)
dZ dZ′. (48)

In Fig. 7, the magnitude and phase of �mm′ are shown as a
function of frequency for a chain with the same parameters as
the one discussed in the example concluding Sec. II A 1. It is
seen that conversion from any mode into a light-line mode at
the chain end is practically zero. Both modes, light line (pole
#1) and guided (pole #2), are converted mostly into a reflected
guided mode. This can explain how edge effects enhance chain
excitation.

2. Example for the effect of the edge on G

There are previously reported studies on finite-length
particle chains and edge effects (see, e.g., Refs. 16–19). All are
essentially based on numerical simulation. In Ref. 16, however,
effort is made to base the study of finite- (but long) chain
Green’s function on that of the infinite chain. Since in such
an approach a deep understanding of the infinite chain case
is crucial, and since our analysis in Sec. II B 1 is targeted at
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FIG. 7. (Color online) �i,j vs ω. �11 = light line to light line;
�12 = guided to light line; �21 = light line to guided; �22 = guided
to guided.

this very same goal, we turn to discuss our analysis in light of
the examples simulated in Ref. 16. Thus, we consider a chain
with parameters identical to those of Ref. 16: ω = ωp/

√
3,

d = λ/10, a = d/4, 1/τ = 0.002ωp/
√

3. We computed Gn,n′

for infinite and for the semi-infinite chains, both with n′ = 0.
The results are compared in Fig. 8.Few observations can
be made. In the domain near the source (for these specific
parameters, n − n′ � 50), the curves are practically identical.
That is, G for infinite and semi-infinite chains differs only
by a constant multiplication factor, given in this example by
Ginf

0,0/Gs−inf
0,0 ≈−1.61+i0.08. However, the two solutions deviate for

larger distances. Hence, the statement made in Ref. 16 that
the Green’s function of infinite and semi-infinite chains differs
only by a multiplication factor is somewhat incomplete; it is
correct only within the limited region near the source. The
physics behind this fact is explained as follows. First, recall
our results of Sec. II A 1. In the infinite chain, the dominant
wave constituent is the guided mode: pole #2 has the largest
residue. The excitation strengths of the light-line mode and
the continuous spectrum wave (pole #1 and branch cut) are
of the same order, and both are orders of magnitude smaller
compared to pole #2. The passage to semi-infinite chain can
be achieved by summing these wave constituents weighted
by their corresponding reflection and coupling coefficients in
Eqs. (42)–(48). Due to the dominance of pole #2, it is mainly
given by �22, which is close to unity (see Fig. 7). However,

−1000 −500 0 500 1000
10

−3

10
−2

10
−1

10
0

|p
n/p

0|

infinite
semi−infinite

z/d

FIG. 8. (Color online) The transverse excitation Gn,0 for infinite
and semi-infinite chains, normalized to their maximum value (at the
source location n = n′ = 0).
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FIG. 9. (Color online) The transverse excitation Gn,0 for semi-
infinite chains, decomposed into its various components. Chain
parameters are the same as for Fig. 8 and Fig. 2 of Ref. 16.

loss is present so this wave decays exponentially. Then, since
the continuous spectrum wave is not affected by loss, and the
light-line pole decay is slower than that of the guided mode,
they take over after a short distance, and both possess different
reflection coefficients. The fact that the lines in Fig. 8 for
large |n − n′| are curved and not straight confirms that the
continuous spectrum has an important contribution {note the
1/[n ln2(n)] behavior in Eq. (21) and the logarithmic scale in
the figure}.

To make a final assessment of these observations, Gn,0 of the
semi-infinite chain is decomposed into its various components.
They are shown in Fig. 9. Chain parameters are identical to
those of Fig. 8 and Fig. 2 of Ref. 16. It is seen that the light-line
wave and the continuous spectrum wave are much weaker
than the excitation of the guided mode near the source. Away
from the source, the continuous spectrum wave can not be
neglected. Furthermore, away from the source, the light-line
mode (pole #1) has an exponential decay, while the continuous
spectrum wave decays slower than an exponential. Finally,
Fig. 10 shows the components of Gn,0 for a semi-infinite chain
with the same parameters as in Fig. 4(a) of Ref. 16: ω =
0.984ωp/

√
3, 1/τ = 0.002ωp/

√
3. With these parameters,

one pole in R0 (principal Riemann sheet) is located deep inside
the unit circle in the Z plane (blue line in Fig. 2 between

1 250 500 750 1000
10
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10
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10
−2

10
0

|p
n/p

0|

Total moment

Branch cut cont.

z/d

FIG. 10. (Color online) The transverse excitation Gn,0 for semi-
infinite chains, decomposed into its various components. Chain
parameters are the same as for Fig. 4(a) of Ref. 16.

points #1 and #2), thus, the corresponding wave decays very
fast. The second pole, corresponding to the light-line mode,
is very close (lossy) or on (lossless) the unit circle. However,
due to its proximity to the branch point, its residue is O(10−5)
smaller than the other wave constituents, so its excitation is
completely negligible (see discussion in Sec. II A 1 regarding
the residue of the light line pole, and Figs. 3 and 4). Hence, the
only contributing wave is the continuous spectrum [and not the
light-line (extraordinary) wave as stated in Ref. 16]. Actually,
the fact that the solution does not appear as a straight line in a
logarithmic scale indicates that this wave decays algebraically
[see Eq. (21)] and not exponentially, so it can not be a simple
pole.

III. EXCITATION BY A BEAM

We examine the excitation of a chain by a x̂-polarized
Gaussian beam (GB) hitting the chain at its waist. The beam
axis crosses the chain at particle #nc, and is tilted at angle
ϑ relative to the chain axis. The incident field at the nth
particle is

Ei
n =

√
w0

wn

eik[n̄d cos ϑ+ (n̄d sin ϑ)2

2wn
] (49)

with wn = n̄d − iF and n̄ = n − nc. F is the beam colli-
mation distance, chosen as F = 500d. The beam frequency
is chosen to be inside the chain propagation band ω/ωp =
0.580 907, yielding zeros of Eq. (11) at Zp1 = ei0.12166,
Zp2 = e−i1.05225, and at the conjugate locations. Two cases are
considered: a semi-infinite chain with the GB hitting the chain
at its end, and excitation of an infinite chain; for both, nc = 0.
We calculate the Green’s function via Eq. (16) [Eq. (38)] and
use the convolution in Eq. (10) [superposition in Eq. (25)] with
the excitation series Eq. (49), for infinite (semi-infinite) chain.
The numerical results are shown in Fig. 11. Figures 11(a)
and 11(b) show the incident field Ei

n for semi-infinite and
infinite chains, respectively. Figures 11(c) and 11(d) show the
chain response. It is seen that when the beam hits the chain end
[Fig. 11(c)], the chain-propagating mode is strongly excited,
and the chain response is very noticeable also away from the
lit region. However, when the incident field does not interact
with the chain end [Fig. 11(d)], the chain-propagating mode
is practically not excited and the chain response in regions
remote from the lit domain is practically zero. The reason
for the significant excitation enhancement by the edge is as
follows. The beam is a free-space wave and, as such, it is
orthogonal to the guided modes of reciprocal waveguides.22

Since its spatial variation scale is approximately the vacuum
wavelength, it couples only to the light-line mode (which
possesses the same length scale), but this coupling is very weak
in infinite chains due to the small residue (see Sec. II A 1).
However, for semi-infinite chains, this orthogonality is lost,
and further, since |�21|,|�22| ≈ 1 (see Fig. 7), the edge converts
both modes to a reflected guided mode.

IV. CONCLUSION

A rigorous Green’s function theory has been developed for
infinite and semi-infinite particle chains. The theory uses the
Z transform (ZT) as its basic spectral tool. In this theory, the
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FIG. 11. (Color online) Chain excitation by a Gaussian beam. (a) Ei
n for a semi-infinite chain, hitting the chain end. (b) Ei

n for an infinite
chain. (c) Response pn of a semi-infinite chain. (d) pn for infinite chain.

Green’s function wave constituents can be discerned directly
from the analytic properties of the chain’s spectra in the
complex Z plane. Each singularity represents a distinct wave
phenomenon, the excitation strength of which is nothing but
the associated residue; poles on the unit circle are guided
modes, poles on trajectories off the unit circle are radiation
modes, and branch cut constitutes the continuous spectrum.
Due to this analytical clarity and physical transparency, a wave
constituent in particle chains, the continuous spectrum wave,
has been exposed. It is shown that this wave may dominate
the chain response under lossy conditions. Physical insight
on the various wave contributors in the infinite chain case
is provided and contrasted with previous studies. By using a
special extension of the Wiener-Hopf technique to the complex
Z plane, our theory is then applied also to semi-infinite
chains, and the edge effects are studied analytically. Special
effort is placed toward expressing the semi-infinite Green’s
function in terms of the wave constituents associated with
the corresponding infinite chain. The result provides physical
insight on the edge effect: how the various wave constituents
are reflected and/or intercoupled at the chain end. It is shown
that the edge can significantly enhance chain excitation by
external beams.
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APPENDIX A: PROPERTIES OF Lis

The series in Eq. (13) is strictly convergent only for |z| � 1.
Analytic continuation of Lis(z) into the complex z plane is
made possible by the integral relation

Lis+1(z) =
∫ z

0
x−1Lis(x)dx, (A1)

hence, Lis(z) inherits the singularity of ln(1 − z) ∀s � 1,
possessing Riemann sheets of infinite multiplicity. Using the
principal branch of the complex logarithm −π < �(ln z) � π ,
it follows that, in the 0-Riemann sheet (R0), it has a branch
point at z = 1, extending along the real positive z axis to +∞,
such that the axis is placed just below the cut.

The following properties are proved in Ref. 21. The dis-
continuity across the cut is given by Lis(z + i0+) − Lis(z) =
2πi[ln(z)]s−1/�(s), with z real and z > 1. Denote the value
of Lis(z) at the nth Riemann sheet by Li(Rn)

s (z). Then,

Li(Rn)
s (z) = Li(R0)

s (z) − 2πi
(ln z)s−1

�(s)
n, (A2)

where n counts the Riemann sheets in a counterclockwise
direction. In the above, ln z possesses the regular branch-cut
definition, hence, it increases by 2πi whenever the negative
real z axis is crossed in a counterclockwise direction. It follows
that on any Riemann sheet except for R0, Lis(z) possesses
additional branch cut, emerging from the origin and extending
along the negative z axes in the same fashion as the ln z cut.
Finally, we note that, while the integral relation (A1) holds
formally for any z, it may become inconvenient for large z.
However, if Lis(z) is known for z inside the unit disk (|z| � 1),
its analytic continuation to |z| > 1 can be computed via

Lis(z) = (−1)s+1Lis

(
1

z

)
− 1

s!
[ln(−z)]s

+ 2
�s/2�∑
r=1

[ln(−z)]s−2r

(s − 2r)!
Li2r (−1). (A3)

APPENDIX B: ASYMPTOTIC BRANCH-CUT
CONTRIBUTION

We derive here Eq. (21) describing the asymptotic (large-n)
behavior of the continuous spectrum wave. The derivation
shall be given for n > 0 and, therefore, we consider only
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integration around the internal cut. By symmetry, the final
result may be extended to any n by replacing n with |n|. We
define a coordinate q along the cut by Z = |q|eikd . As Z

changes along Cb in a counterclockwise direction, q roams
over the interval [−1,1]. The branch-cut contribution is given
by Eq. (18). Consider the integrand Zn−1/D̄(Z). For n � 1,
we observe that along the cut, the integrand numerator is
vanishingly small except for small regions near the branch
point, corresponding to q = ±1. Consequently, for n � 1, we
may replace the denominator of the integrand by an appropriate
approximation, valid for |q| ≈ 1,

D̄(q) ≈ k2

4πdε0
[C − ln(1 − |q|) − πisgn(q)] (B1)

with

C = −kd

α
+ Li1 (e2ikd ) + i

kd

(
Li2 (e2ikd ) + π2

6

)

− 1

(kd)2
[Li3 (e2ikd ) + ζ (3)], (B2)

where ζ (3) = 1.202 057 is the Riemman zeta function of 3. In
the derivation of Eq. (B1), we have used Eq. (A2) together with
the fact that, for |q| ≈ 1, ln(1 − |q|−1) ≈ ln(1 − |q|) − πi.

In order to demonstrate the validity of the arguments above,
the original integrand and its approximation are shown in
Fig. 12. It may be seen that as n increases, the approximation
becomes more and more accurate. In addition, we observe that
the integrand vanishes at the branch point. Hence, standard
asymptotic techniques used in wave theory can not be applied.
We use Eq. (B1) and rewrite Eq. (18) as

G(b)
n 
 4πε0d

k2
einkd

∫ 1

0

qn−1dq∏2
m=1[ln(1 − q) − Am]

(B3)

with A1,2 = C ± πi. By applying a second change of variable
u = − ln(1 − q), we obtain

G(b)
n 
 4πε0d

k2
einkd

×
∫ ∞

0

(1 − e−u)n−1e−udu

(u + A1)(u + A2)
. (B4)

−1 −0.995 −0.99 −0.985
−0.04

−0.02

0

0.02

−0.02

−0.01

0

0.01

0.02
Re
Im

(a)

(b)

0.985 0.99 0.995 1
q

|n−n’|=1000

|n−n’|=200

FIG. 12. (Color online) The integrand of Eq. (18) along the branch
cut (solid lines) and its approximation (dashed lines). (a) for |n −
n′| = 1000, q < 0 (just below the cut), q > 0 (just above the cut). (b)
The same as (a) but for |n − n′| = 200.

Consider the integrand in Eq. (B4). The numerator is positive
and very small almost on the entire u > 0 axis except for
a region around its single maximum at umax = ln n. Also,
the denominator never vanishes, and changes rather slowly
especially as u increases (the relevant domain of u for
large n). Therefore, for large n, we use zeroth-order Taylor
approximation in the vicinity of umax:

1

u + A1,2

 1

ln n + A1,2
. (B5)

We have validated that the higher-order terms do not contribute
to the first asymptotic term in the final result. Finally, by using
Eq. (B5) in Eq. (B4) and evaluating the resulting integral, we
obtain Eq. (21).

APPENDIX C: PROOF OF IDENTITIES (28)–(31)

We prove the identities in Eqs. (28)–(31). An obvious
identity is ∮

C1

ln D̄(ζ )

Z − ζ
dζ =

∮
C1

ln D+(ζ )

Z − ζ
dζ

+
∮

C1

ln D−(ζ )

Z − ζ
dζ. (C1)

We start with |Z| > 1. In this case, the second term of the
right-hand side vanishes (apply the residue theorem and recall
that D− is analytic and has no zeros inside the unit circle). The
first term in the right-hand side can be evaluated by using the
integration contour C1 ∪ C∞ shown in Fig. 13. Since ln D+(ζ )
does not possess any singularity in the region enclosed (D+
there is analytic and has no zeros there), we have∫

C1∪C∞

ln D+(ζ )

Z − ζ
dζ = 2πi ln D+(Z). (C2)

Hence, returning back to Eq. (C1),∮
C1

ln D̄(ζ )

Z − ζ
dζ = 2πi ln D+(Z) −

∮
C∞

ln D+(ζ )

Z − ζ
dζ.

(C3)

FIG. 13. Integration contours in the ζ plan.
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With Eq. (27), we may replace D+(ζ ) in the integrand above
by D−(0), so the surviving integral is a simple pole. We are
left with∮

C1

ln D̄(ζ )

Z − ζ
dζ = 2πi ln D+(Z) − 2πi ln D−(0). (C4)

By rearranging and exponentiating, we get

D+(Z) = D−(0) exp
1

2πi

∮
C1

ln D̄(ζ )

Z − ζ
dζ. (C5)

By repeating the same procedure for |Z| < 1 and exploiting
the analyticity of D− inside C1 and of D+ between C1 and
C∞, we obtain

D−(Z) = 1

D−(0)
exp

−1

2πi

∮
C1

ln D̄(ζ )

Z − ζ
dζ. (C6)

By setting Z = 0 in the equation above and defining λ−1
0 =

D−(0), we obtain Eqs. (30) and (31). Using the definition of
λ0 in Eq. (C5), we obtain Eq. (28). The latter is valid only
for |Z| > 1 and the expression itself is discontinuous when
the pole at ζ = Z crosses the closed integration contour C1

(at |Z| = 1). Inside the unit circle, ln D̄(ζ ) has at most three
branch cuts and no poles. One branch cut is due to D̄ itself
(see Fig. 2), and two are due to the zeros of D̄. Then, by
using Cauchy theorem, we may replace C1 by three integration
paths along the cuts in a counterclockwise direction. Hence,
for |Z| > 1, Eq. (28) is equivalent to

D+(Z) = 1

λ0
exp

1

2πi

∮
∪Cbc

ln D̄(ζ )

Z − ζ
dζ. (C7)

With this expression, D+(Z) changes continuously when
Z is continued into the unit circle, so it may be

considered as the analytic continuation. If we now set
|Z| < 1, a single pole is introduced inside the unit circle.
The passage from the contours ∪Cbc to the more conve-
nient contour C1 should take this pole into account via its
residue. Hence, using C1, we have for |Z| < 1 the result that
gives Eq. (29):

D+(Z) = 1

λ0
exp

1

2πi

∮
C1

ln[D̄(ζ )/D̄(Z)]

Z − ζ
dζ. (C8)

APPENDIX D: PROOF OF EQ. (37)

We multiply Eq. (36) by Zj ′−1, integrate along C1, use
E+(Z) = Z−n′

and Eq. (33), and apply Cauchy’s theorem.
The result is

aj = 1

2πi

∮
C1

Zj−n′−1

D−(Z)
dZ

− 1

2πi

∮
C1

(
E+

D−

)−
(Z)Zj−1dZ, (D1)

where we changed j ′ → j . The second integrand on the
right is analytic inside the unit circle for j � 1. Recall
that Ē−(Z) = ∑−1

n=−∞ E−
n Z−n ⇒ Ē−(0) = 0. Since the right-

hand side of Eq. (34) vanishes (see the preceding discussion),
it follows that (Ē+/D−)− vanishes too for Z = 0 (D− is
analytic and has no zeros inside the unit circle). Hence, in
the second integrand above, analyticity in the unit circle and
at the origin is maintained also for j = 0. Consequently,
by Cauchy’s theorem, the second integral vanishes for j �
0. Regarding the first integral, by the properties of D−
mentioned above, the integrand is analytic for j � n′ + 1. This
yields Eq. (37).
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